On Boundary Value Problems for Elliptic Equations in a Singular Domain
نویسندگان
چکیده
منابع مشابه
Boundary Value Problems for Elliptic Equations
where án, denotes differentiation in the direction of tlie normal to 8B . As is well known, there are explicit formulas for the solutions of the aboye problems, and one can then give a very careful analysis of the solutions when, say f E LP(áB, do), 1 < p < oo . In both cases, the boundary values are taken in the sense of non-tangential convergence, Le ., if Q E aB, and F(Q) _ F. (Q) _ {X E B1 ...
متن کاملOn Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations
We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...
متن کاملOn Schwarz's domain decomposition methods for elliptic boundary value problems
We study the additive and multiplicative Schwarz domain decomposition methods for elliptic boundary value problem of order 2r based on an appropriate spline space of smoothness r ? 1. The nite element method reduces an elliptic boundary value problem to a linear system of equations. It is well known that as the number of triangles in the underlying triangulation is increased, which is indispens...
متن کاملBoundary value problems for elliptic operators with singular drift terms
Let Ω be a Lipschitz domain in R, n ≥ 3, and L = divA∇ − B∇ be a second order elliptic operator in divergence form with real coefficients such that A is a bounded elliptic matrix and the vector field B ∈ Lloc(Ω) is divergence free and satisfies the growth condition dist(X, ∂Ω)|B(X)| ≤ ε1 for ε1 small in a neighbourhood of ∂Ω. For these elliptic operators we will study on the basis of the theory...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1969
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000013143